If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80-4.9t^2=0
a = -4.9; b = 0; c = +80;
Δ = b2-4ac
Δ = 02-4·(-4.9)·80
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*-4.9}=\frac{0-28\sqrt{2}}{-9.8} =-\frac{28\sqrt{2}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*-4.9}=\frac{0+28\sqrt{2}}{-9.8} =\frac{28\sqrt{2}}{-9.8} $
| 5(u–3)=40 | | H(t)=80-4.9t^2 | | 3k−5=10 | | 10+b6=10 | | 2(x-3)-(x+4)=x | | 60-x=80-2x | | -12x-5=10 | | 4(7a+3)=124 | | 1+5n=-2+2n | | 6=9+c | | 22.79=4g+3.87 | | 10=3k−5 | | 22.79=4g+3.37 | | -2=4+a2 | | -7-6x=-2x+5 | | (28b-3)-9(3b+1)=-7 | | 7x-(2=x)=-6+4x+3 | | 21=13+w | | 4v+3=3+4v | | N2=2+n | | 5x-19=12x+2 | | 3x^2+18x-13=32 | | -18=-7q+10 | | X/6=e | | 13(-8=x)=26 | | 75/x+95=96 | | 90x/4+20=100+400 | | 2x+4=-14-4x | | 180=2x-10 | | 6(r–8)=6 | | 5(8x-4)=60 | | 4.2+10m=7.16 |